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Figure 3. Two-dimensional peptide maps of a tryptic digest of synthetic 
apoC-I. The protein (1.5 mg) was dissolved in ammonium bicarbonate 
(0.5%), trypsin (15 Mg) was added, and the digestion was performed at 37° 
for 4 h. The digest was then examined in two dimensions by electrophoresis 
at pH 6.5 in pyridine:acetic acid:water buffer (25:1:225) and by chro­
matography in butanol:acetic acid:water (4:1:5, upper phase). The chro-
matogram was visualized in ninhydrin and chlorine/starch reagent (both 
reagents gave similar results). The single open spot corresponds to the only 
Trp containing peptide (uv fluorescence). 

polyacrylamide gel electrophoresis at pH 8 in the presence of 
0.1% sodium dodecyl sulfate, and pH 8.2 in the presence of 8 
M urea (the single band had the same appearance as shown 
in the Figure 1 inset but with the minor band absent). The 
synthetic product showed strong cross-reactivity with antise­
rum specific to native apoC-I.25 The synthetic apoC-I was 
assayed by the procedure of Soutar et al.2 and showed signif­
icant activity as an activator of LCAT.24 Amino acid analysis 
of an acid hydrolysate was in good agreement with the expected 
values,26 i.e., Lys 9.3 (9), Arg 3.1 (3), Trp 0.8 (1), Asp 5.0 (5), 
Thr 2.8 (3), Ser 7.1 (7), GIu 9.0 (9), Pro 0.9 (1), GIy 1.1 (1), 
Ala 3.1 (3), VaI 2.2 (2), Met 1.0 (1), He 2.8 (3), Leu 5.8 (6), 
Phe 3.0 (3). Peptide maps of tryptic digests of synthetic apoC-I 
showed the expected number of fragments4,27 and confirmed 
that the synthetic product was essentially pure. 
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Low Temperature Studies on Propionyl Benzoyl Peroxide 
and Propionyl Peroxide. The Ethyl Radical 

Sir: 

Recently we demonstrated that the infrared spectra of 
simple free radicals, in particular the infrared spectra of the 
phenyl and methyl radical, may be obtained by photochemical 
cleavage of asymmetric acyl peroxides.1 Here we report that 
analogously ethyl and phenyl radicals may be obtained by 
photodestruction of propionyl benzoyl peroxide (I), and that 
high concentrations of alkyl radicals may be obtained by 
photolysis of symmetric diacyl peroxides as well. In fact, the 
concentrations of the radicals produced are so high that the 
complete vibrational spectrum is obtained. 

Compound I was isolated in an argon matrix at 6 K and 
subsequently irradiated with a medium-pressure mercury lamp 
in conjunction with a water filter and a Corning No. 053 uv 
filter with no transmission below 2900 A. During the irradia­
tion bands due to CO2 and ethyl benzoate2 appeared together 
with an intense band at 710 cm - 1 characteristic of the phenyl 
radical,3 and another band at 541 cm - 1 . Upon warming the 
matrix to 30 K the latter two bands disappeared4 within several 
seconds, and simultaneously new bands due to ethylbenzene, 
ethylene, and benzene appeared. Since these new bands can 
conveniently be explained as being due to the combination and 
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Figure 1. CH 3 CH 2 CO 2 O 2 CCHJCH 3 in an argon matrix. Irradiation with 
light X >2900 A for T = 6795 min. (Scale in cm"1.) 

Table I. A List of the Vibrational Bands Which Are Shown in 
Figure 1 and Are Assigned to the Ethyl Radical, and Those Due to 
Ethane, Ethylene, and Butane, the Combination and 
Disproportionation Products of Ethyl Radicals Shown in Figure 2. 

C2H5-, 
cm ' 

(Figure 1) 

3112.5 
3032.5 
2982.5 
2887.5 
2840.0 
1465.0 

Combination and 
disproportionation 

products, c m - 1 

(Figure 2) 

3100* 
2980*.<-
2940*.' 
1471c 

1464A,c 
1439" 

C2H5-, 
cm ' 

(Figure 1) 

1437.5 
1365.8 
1186.5 
955.0 
814.0 
805.0 
541.0 

Combination and 
disproportionation 

products, cm"1 

(Figure 2) 

1379' 
965c 

954" 
821* 
735c 

a Ethylene. * Ethane.c Butane. 
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disproportionation products of a phenyl and an ethyl radical 
we assign the 541-cm-1 band to the out-of-plane bending mode 
of the ethyl radical. Scheme I summarizes these results. 

Dipropionyl peroxide (II) was isolated in an argon matrix 
and irradiated under the same conditions as I. Upon irradia­
tion, bands due to CO2 and those listed in Table I appeared. 
Kinetic plots (band intensities vs. time) show that the rate of 
CO2 formation as well as those of all the other bands shown 
in Figure 1 correlate with the rate of disappearance of II. Upon 
a brief warm-up to 30 K all of the new bands shown in Figure 
I, except CO2, synchronously disappear with the appearance 
of vibrational bands due to butane, ethane, and ethylene. The 
spectrum recorded after the warm-up is shown in Figure 2. 

We assign the vibrational spectrum shown in Figure 1 to the 
ethyl radical because the same spectrum is obtained from I and 
II. Furthermore, the warm-up products which result from the 
combination and disproportionation reactions clearly indicate 

Figure 2. Brief warm-up to 30 K for 1 min after all peroxide 
(CH3CH2CO2O2CCH2CH3) was destroyed by light with X >2900 A. 
(Scale in cm-1-' 

the presence of the ethyl radical. Scheme II summarizes these 
results. 

A qualitative description of the structure of the ethyl radical 
may be obtained by comparison of its infrared spectrum with 
CH2CD2 .5 The frequencies at 3112.5 and 3032.5 c m - 1 and 
the band at 1365.8 c m - 1 agree favorably with the CH 
stretching (3095 and 3016 cm - 1 ) and in-plane deformation 
(scissoring motion at 1384 cm - 1 ) of the CH2 group in 
CH2CD2 .6 This similarity with ethylene leads us to conclude 
that the electronic structure of the CH 2 group in the ethyl 
radical probably exists in an sp2 configuration.7 However, the 
much lower out-of-plane bending frequency (CH2CD2 = 943 
cm - 1 , CHsCH 2 = 541 cm - 1 ) in the ethyl radical is a direct 
reflection of the absence of the IT bond in C2Hs and the relative 
ease with which the radical center may distort. 

The frequencies in the CH stretching region below 3000 
c m - 1 are assigned to those of the methyl group in the ethyl 
radical. The band at 2982.5 cm - 1 is similar to the asymmetric 
CH stretch of the CH3 group in alkanes; however, the band at 
2840 c m - 1 is lower than any CH stretching frequency asso­
ciated with normal alkanes.8 This may be a reflection of the 
low energy required (38 kcal/mol) to break a CH bond in the 
methyl group of the ethyl radical.9 Olah and co-workers10 have 
observed a similar effect in the isopropylcarbonium ion and 
have suggested that the low CH stretching frequencies were 
due to hyperconjugation. We have also observed similar effects 
in the isopropyl radical.1 ' 

Studies on deuterated species are being conducted in order 
to perform a complete normal coordinate analysis. These re­
sults will appear shortly. 
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